Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Guang-Qi Xiang, Li-Xue Zhang, An-Jiang Zhang, Xiao-Qing Cai and Mao-Lin Hu*

Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail:
hu403cn@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.079$
$w R$ factor $=0.195$
Data-to-parameter ratio $=12.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

6-(2,4-Difluorophenyl)-3-(3-methylphenyl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazine

In the title compound, $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{~S}$, the five-membered triazole ring and two benzene rings are planar, while the sixmembered thiadiazole ring is slightly distorted, with a mean deviation of $0.234 \AA$. Both the ring S and adjacent nonbridgehead C atom deviate significantly $[0.320(2)$ and $0.370(2) \AA$ from the thiadiazole plane. In the crystal structure, four different kinds of intra- and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonding interactions are observed, leading to the formation of a one-dimensional zigzag chain along the crystallographic b axis.

Comment

1,2,4-Triazoles fused with six-membered ring systems are found to possess diverse applications in the fields of medicine, agriculture and industry. The commonly known systems are triazoles fused with pyridine, pyridazine, pyrimidine, pyrazines and triazines. A literature survey reveals that there are not many examples of triazoles fused with thiadiazines. Moreover, a large number of triazolothiazines have been shown to exhibit antimicrobial (Feng et al., 1992) and diuretic (Mohan \& Anjaneyulu, 1987) properties and act as photographic couplers (Holla et al., 2001). On the other hand, much attention has been paid to partially fluorinated heterocyclic compounds, because of their unique chemical, physical and biological properties (Shaaban \& Fuchigami, 2002). The development of efficient methods for selective fluorination of heterocycles is, therefore, of much importance. In this paper, we report the synthesis and crystal structure of the title compound, (I).

(I)

In (I), the five-membered triazole ring (atoms $\mathrm{N} 2, \mathrm{~N} 3, \mathrm{~N} 4$, C 9 and C 10) and the benzene rings $(\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5$ and C 6 of the difluorobenzene ring, and $\mathrm{C} 11, \mathrm{C} 12, \mathrm{C} 13, \mathrm{C} 14, \mathrm{C} 15$ and C16 of the methylbenzene ring) are essentially planar, with mean deviations of $0.002,0.003$ and $0.007 \AA$, respectively, while the six-membered thiadiazole ring, composed of atoms

Received 25 October 2004 Accepted 29 October 2004 Online 6 November 2004

Figure 1
The molecular structure of (I) with the atom numbering, showing displacement ellipsoids at the 50% probability level.
$\mathrm{N} 1, \mathrm{~N} 2, \mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 9$ and S 1 , is slightly distorted, with a mean deviation of $0.234 \AA$ (Fig. 1). Owing to the greater bulk of the 3-methylphenyl and 2,4-difluorophenyl rings, both C8 and S1 deviate significantly $[0.370(2)$ and $0.320(2) \AA]$ from the thiadiazole plane. Both the $\mathrm{S}-\mathrm{C}$ (with mean distance $1.775 \AA$) and $\mathrm{C}-\mathrm{N}$ bond lengths are in line with this observation in related complexes (Sert et al., 2003; Zou et al., 2004). The C and N atoms are involved in the conjugated form of the fivemembered triazole ring, because the $\mathrm{C}-\mathrm{N}$ bond lengths, in the range $1.290(5)-1.374$ (5) \AA, are longer than a typical double $\mathrm{C}=\mathrm{N}$ bond [ca 1.269 (2) \AA], but shorter than a $\mathrm{C}-\mathrm{N}$ single bond [ca 1.443 (4) Å] (Jin et al., 2004) (Table 1). The dihedral angle between the thiadiazole ring and the 2,4-difluorobenzene ring is $26.47(9)^{\circ}$, which is larger than that between the two benzene rings [12.57(17) ${ }^{\circ}$]; the thiadiazole ring and the triazole ring of (I) subtend a dihedral angle of 12.43 (12) ${ }^{\circ}$.

In the crystal structure, the title compound forms four different kinds of intra- and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, with $\mathrm{C} \cdots \mathrm{N}$ distances in the range 3.032 (5)3.394 (5) A; these hydrogen-bonding interactions lead to the formation of a one-dimensional zigzag chain along the crystallographic b axis (Fig. 2).

Experimental

The key intermediate 4-amino-5-mercapto-3-(3-methylphenyl)-1,2,4triazole was prepared from 3-methylbenzoic acid hydrazide, whose starting material was 3 -methylbenzoic acid, following the literature method of Zhang et al. (1990). To a solution of 4 -amino-5-mercapto-3-(3-methylphenyl)-1,2,4-triazole (0.01 mol) in absolute ethanol was added 2-bromo- 4^{\prime}-methylacetophenone $(0.01 \mathrm{~mol})$. The mixture was refluxed for 7 h . The solid obtained on cooling was filtered, washed with cold water, dried and recrystallized from ethanol to give crystals of the title compound. IR $(\mathrm{KBr}): 2917,2845\left(\mathrm{CH}_{2}\right), 1597(\mathrm{C}=\mathrm{N})$, 1540, 1497, 1482, $1447(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}), 1274(\mathrm{~N}-\mathrm{N}=\mathrm{C}), 1102(\mathrm{C}-\mathrm{F})$, 851, 787, 708 (di- and trisubstituted benzene), $700(\mathrm{C}-\mathrm{S}-\mathrm{C}) \mathrm{cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (chloroform- d): $\delta 7.76-7.92(m, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.30-7.53$ (m, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.35\left(s, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 2.38\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. MS $m / z(\%): 344$

Figure 2
Part of the crystal structure, showing the infinite hydrogen-bonding network of (I) running along the b axis. Hydrogen bonds are indicated by dashed lines.
$\left(M^{+}+2,4.59\right), 342\left(M^{+}, 72.29\right), 229$ (3.13), 206 (12.14), 153 (21.99), 145 (20.76), 139 (100), 119 (42.59), 118 (33.33), 117 (53.46), 116 (26.97), 91 (15.54), 90 (22.93), 89 (22.13), 58 (95.41), 51 (11.74), 39 (13.56). Elemental analysis for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{~S}$: C 59.23 , H 3.76, N 16.02%; calculated: C 59.58 , H 3.51, N 16.36%; m.p. $432-434$ K.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{~S}$
$M_{r}=342.37$
Monoclinic, $P 2_{1} / c$
$a=15.4067(15) \AA$
$b=13.3329(13) \AA$
$c=7.7173$ (7) \AA
$\beta=103.117$ (2) ${ }^{\circ}$
$V=1543.9$ (3) \AA^{3}
$Z=4$

$$
D_{x}=1.473 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 1797 reflections
$\theta=2.4-24.7^{\circ}$
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colorless
$0.38 \times 0.16 \times 0.14 \mathrm{~mm}$

Data collection

Bruker SMART APEX area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.915, T_{\text {max }}=0.963$
8055 measured reflections

> 2783 independent reflections
> 2414 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.032$
> $\theta_{\max }=25.2^{\circ}$
> $h=-15 \rightarrow 18$
> $k=-13 \rightarrow 15$
> $l=-9 \rightarrow 8$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0859 P)^{2} \\
&+0.5857 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}
\end{aligned}
$$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N} 3^{\mathrm{i}}$	0.93	2.49	$3.364(5)$	157
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{~N}^{\mathrm{i}}$	0.97	2.47	$3.394(5)$	159
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{~N} 4^{\mathrm{i}}$	0.97	2.62	$3.312(5)$	129
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{~N} 1$	0.93	2.42	$3.032(5)$	123

Symmetry code: (i) $-x, \frac{1}{2}+y, \frac{1}{2}-z$.

All H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $\mathrm{Csp}^{2}-\mathrm{H}=0.93 \AA$ with $U_{\text {iso }}=$ $1.2 U_{\mathrm{eq}}(\mathrm{C}), \mathrm{Csp}{ }^{3}-\mathrm{H}=0.96$ or $0.97 \AA$ with $U_{\text {iso }}=1.5 U_{\mathrm{eq}}(\mathrm{C})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

We acknowledge financial support by the Zhejiang Provincial Technology Project Foundation of China (No. 2004C32088) and the Zhejiang Provincial Natural Science Foundation of China (No. M 203149).

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Feng, X. M., Chen, R. \& Yang, W. D. (1992). Chem. J. Chin. Univ. 13, 187-194.
Holla, B. S., Akberali, P. M. \& Shivananda, M. K. (2001). Farmaco, 56, 919927.

Jin, Z. M., Li, L., Li, M. C., Hu, M. L. \& Shen, L. (2004). Acta Cryst. C60, o642o643.
Mohan, J. \& Anjaneyulu, G. S. R. (1987). Pol. J. Chem. 61, 547-551.
Shaaban, M. R. \& Fuchigami, T. (2002). Tetrahedron Lett. 43, 273-276.
Sert, S., Ercag, A., Senturk, O. S., Sterenberg, B. T., Udachin, K. A., Ozdemir, U. \& Sarikahya, F. U. (2003). Polyhedron, 22, 1689-1693.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.
Zhang, L. X., Zhang, Z. Y. \& Zeng, F. L. (1990). Chem. J. Chin. Univ. 11, 148151.

Zou, K. H., Cai, X. Q., Chen, J. X., Zhang, L. X., Zhang, A. J. \& Hu, M. L. (2004). Acta Cryst. E60, o1736-o1738.

